
A Review of Lightweight Thread Approaches
for High Performance Computing

Adrián Castelló∗ Antonio J. Peña† Sangmin Seo‡ Rafael Mayo∗ Pavan Balaji‡ Enrique S. Quintana-Ortı́∗
∗ Universitat Jaume I, {adcastel,mayo,quintana}@uji.es
† Barcelona Supercomputing Center, antonio.pena@bsc.es
‡ Argonne National Laboratory, {sseo,balaji}@anl.gov

Abstract—High-level, directive-based solutions are becoming
the programming models (PMs) of the multi/many-core architec-
tures. Several solutions relying on operating system (OS) threads
perfectly work with a moderate number of cores. However,
exascale systems will spawn hundreds of thousands of threads
in order to exploit their massive parallel architectures and thus
conventional OS threads are too heavy for that purpose. Sev-
eral lightweight thread (LWT) libraries have recently appeared
offering lighter mechanisms to tackle massive concurrency. In
order to examine the suitability of LWTs in high-level runtimes,
we develop a set of microbenchmarks consisting of commonly-
found patterns in current parallel codes. Moreover, we study
the semantics offered by some LWT libraries in order to expose
the similarities between different LWT application programming
interfaces. This study reveals that a reduced set of LWT functions
can be sufficient to cover the common parallel code patterns and
that those LWT libraries perform better than OS threads-based
solutions in cases where task and nested parallelism are becoming
more popular with new architectures.

I. INTRODUCTION

The number of cores in high-performance computing (HPC)

systems has been increasing during the last years as reflected

in Figure 1, which illustrates the evolution of the number

of cores per socket in the supercomputers of the November

Top500 list [1]. This trend indicates that exascale systems are

expected to leverage hundreds of millions of cores. Therefore,

future applications will have to accommodate this massive

concurrency in some way. To do so, applications will need

to deploy billions of threads and/or tasks in order to extract

the computational power of such hardware.

Current threading approaches are based on operating system

(OS) threads (e.g., Pthreads [2]) or high-level programming

models (PMs) (e.g., OpenMP [3]) that are closely tied with OS

threads. Due to their relatively expensive context switching and

synchronization mechanisms, efficiently leveraging a massive

degree of parallelism with these solutions may be difficult.

Therefore, dynamic scheduling and user-level thread (ULT)/

tasklet models were first proposed in [4] to deal with the

required levels of parallelism, offering more efficient context

switching and synchronization operations.

Some of these lightweight thread (LWT) libraries are im-

plemented for a specific OS, such as Windows Fibers [5]

and Solaris Threads [6], or a specific hardware such

as TiNy-threads [7] for the Cyclops64 cellular architec-

ture. Other solutions emerged to support a specific higher-

0%

20%

40%

60%

80%

100%

2001
2002

2003
2004

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015

P
er

ce
nt

ag
e

(%
)

Year

1
2

4
6

8
9-10

12-14
16-

Fig. 1: Top500 supercomputers grouped by the number of

cores per socket (Top500 November List).

level PM. This is the case of Converse Threads [8] for

Charm++ [9] and Nanos++ LWTs [10] for task parallelism

in OmpSs [11]. Moreover, there are general-purpose solu-

tions such as MassiveThreads [12], Qthreads [13], and

Argobots [14]; and solutions that abstract the LWT facil-

ities such as Cilk [15], Intel TBB [16], and Go [17]. In

addition, other solutions like Stackless Python [18] and

Protothreads [19] are more focused on stackless threads.

In spite of their potential performance benefits, none of these

solutions has been significantly adopted to date.

To address the current scenario, in this paper we demon-

strate the usability and performance gain of this type of

libraries. For this purpose, we decompose several LWT so-

lutions from a semantic point of view, identifying the strong

points of each LWT solution. Moreover, we offer a detailed

performance study by using OpenMP PM because of its

position as the de facto standard parallel programming model

for multi/many-core architectures. Our results reveal that the

performance of most of the LWT solutions is similar each

other and that they are as efficient as OS threads in some

simple scenarios while outperforming them in many cases.

In summary, the contributions of this paper are: (1) a

semantic analysis of the current and most used LWT solutions;

(2) a performance analysis demonstrating the benefits of

leveraging LWTs instead of OS threads; and (3) a study of the

functionality and PM that are shared between LWT libraries.

2016 IEEE International Conference on Cluster Computing

2168-9253/16 $31.00 © 2016 IEEE

DOI 10.1109/CLUSTER.2016.12

471

The rest of the paper is organized as follows. Section II

briefly reviews related work. Section III offers some back-

ground on our reference libraries. Section IV presents a

semantic analysis of the different LWT approaches. Section V

offers detailed information about the used hardware and soft-

ware. Section VI provides a preliminary analysis of important

parallel mechanisms. Section VII introduces the different

parallel patterns that are analyzed. Section VIII discusses the

microbenchmark design decisions. Section IX analyzes the

performance of LWT libraries. Section X contains conclusions

and future work proposals.

II. RELATED WORK

The use of ULTs to increase concurrency while maintain-

ing performance is not a new topic. In its evolution, as in

other paradigms, new solutions aim to improve upon previous

approaches. The concept of LWT was first introduced in [4],

focusing on fundamentals such as scheduling, synchronization,

and local storage. Converse Threads was later presented

in [20] as a low-level LWT library. It supports not only ULTs

but also stackless threads called Messages. Qthreads was

presented in [13] and compared with the Pthreads library by

means of a set of microbenchmarks and applications. This so-

lution increases the number of hierarchical levels to three with

an intermediate element known as Worker. MassiveThreads

was presented in [12]. This work provides a performance

comparison among MassiveThreads, Qthreads, Nanos++,

Cilk, and Intel TBB on several benchmarks. Argobots was

presented in [14] with microbenchmark and application evalu-

ations versus Qthreads and MassiveThreads. This library

is conceptually based on Converse Threads and allows

the use of stackless threads called Tasklets. In addition, it

features complete design flexibility and stackable, independent

schedulers.

Our purpose of this work is to present an analytic compari-

son of the LWT libraries from the semantic and PM points of

view as well as a performance evaluation demonstrating that

LWTs can be a promising replacement for Pthreads as the

base of high-level PMs.

III. BACKGROUND

In this section, we review the OpenMP PM and the different

LWT libraries analyzed and evaluated in this paper. While

Qthreads and MassiveThreads have been selected because

they are among the best-performing lightweight threading

models in HPC, Converse Threads and Argobots were

chosen because they are one of the first and currently used

LWT library and the most flexible solution, respectively.

Despite Go is not HPC-oriented, we have also included it as

a representative of the high-level abstracted LWT implemen-

tations.

A. OpenMP

OpenMP is an application programming interface (API)

that supports multi-platform shared memory multiprocessing

programming. Currently, there exist implementations for most

platforms, processor architectures, and operating systems.

OpenMP exposes a directive-based PM that helps users to

accelerate their codes exploiting hardware parallelism. In-

tel and GNU OpenMPs are two commonly used OpenMP

implementations that lie on top of Pthreads in order to

exploit concurrency. These runtimes automatically create all

the needed structures and distribute the work.

Since version 3.0, OpenMP has supported the concept of

tasks, which constitutes different pieces of code that may be

executed in parallel. In contrast with work-sharing constructs,

distinct OpenMP implementations leverage different mecha-

nisms for task management. In particular, while the GNU

version implements a shared task queue for all threads, the

Intel implementation incorporates one task queue for each

thread and integrates a work-stealing procedure for the load

balance.

B. Converse Threads

Converse Threads is a parallel-programming, language-

integration solution designed to allow the interaction of dif-

ferent PMs. This library seeks portability among hardware

platforms. Converse Threads exposes two types of work

units: ULTs and Messages. The former represents a migratable,

yieldable, and suspendable work unit with its own stack; the

latter represents a piece of code that is executed atomically.

Messages do not have their own stack and thus they cannot be

migrated, yielded, or suspended. Messages are used as inter-

ULT communication and synchronization mechanisms. Each

thread has its own work unit queue but only messages can be

inserted, before their execution, into other thread’s queues.

The implementation of the Charm++ programming model

is currently built on top of Converse Threads, and several

Converse Threads modules (e.g., client-server) have been

implemented specifically for that interaction.

C. MassiveThreads

MassiveThreads is a recursion-oriented LWT solution that

follows the work-first scheduling policy. When a new ULT is

created, it is immediately executed, and the current ULT is

moved into a ready queue. This behavior can be configured

differently inside the library at compile time. Using a work-

first policy benefits recursive codes that need less synchro-

nization. MassiveThreads uses the concept of Worker as a

hardware resource (generally a CPU or core), and the number

of Workers can be specified with environment variables.

Load balance is pursued with a work-stealing mechanism

that allows an idle Worker to gain the access to other Worker’s

ready queue and to steal a ULT. This mechanism requires

mutex protection in order to access the queue.

D. Qthreads

This library presents a hierarchical PM composed of three

levels: Shepherds, Workers, and Work Units. The first two

elements can be bound to several types of hardware resources

(nodes, sockets, cores, or processing units). The Shepherd

boundary level lies in a higher level than the Worker level.

472

Depending on the level of the Shepherds, they can manage one

or more Workers. These configurations are determined by the

programmer via environment variables and are created inside

the initialization function. Qthreads enables creating ULTs

into other Shepherds’ queues, providing enhanced flexibility

to the programmer. A large number of distributed structures

such as queues, dictionaries, or pools are offered along with

for loop and reduction functionality.

Qthreads allows a large number of ULTs accessing any

word in memory. Associated full/empty bits are used not only

for synchronization among ULTs but also to leverage mutex
mechanisms. This free-access to memory requires hidden

synchronization, which may severely impact performance.

E. Argobots

Argobots is the likely most flexible and recent solution. It

presents a mechanism-oriented LWT library that allows pro-

grammers to create their own PMs. Like Converse Threads,

Argobots presents two types of work units: ULTs and Tasklets

(similar to Converse Threads Messages).

This library provides the programmer with absolute control

of all the supported resources. Execution Streams may be

dynamically created at run time instead of at the initialization

point. Moreover, users can also decide the number of required

work unit pools as well as which Execution Streams have

access to each pool. Although a scheduler is defined for each

pool, programmers may still create their own instances and

apply them individually to the desired pools. Furthermore,

Argobots allows stackable schedulers, enabling dynamic

changes to the scheduling policy.

F. Go

Go is an object-oriented programming language focused on

concurrency that is practically hidden to programmers. From

the point of view of LWTs, this language supports concurrency

by means of goroutines that are ULTs executed by the

underlying threads. The number of threads may be decided

by the user at execution time.

In Go, all threads share a global queue where goroutines

are stored. A scheduler is responsible to assign them to idle

threads. This global, unique queue needs a synchronization

mechanism that may impact performance when an elevated

number of threads are used. The synchronization procedure

implemented by Go is an out-of-order communication channel

that, from the point of view of performance, can obtain better

results than the sequential mechanisms.

IV. SEMANTIC ANALYSIS OF THE LWT LIBRARIES

The semantic analysis of the LWT libraries presented in

this section aims to expose the flexibility offered to the

programmer. All these libraries were designed to provide more

flexible parallelization paradigms and with the main goal of

reducing the overhead caused by conventional OS threading

mechanisms. Although these solutions are executed in the

user space and the thread management is done without the

participation of the OS, the libraries lie on top of OS threads.

However, each library has its own PM, and the functionality

offered to the programmers may vary.

The most important features of the LWT libraries from

the point of view of the PM are summarized in Table I.

POSIX Threads (Pthreads) are also included for reference.

The number of hierarchical levels exposed by the different

threading library may vary and it depends on the number of

execution units or concepts that each library exposes. While

Pthreads only supports one level (the Pthread itself), the

LWT solutions support at least two different levels. The former

level corresponds to their own Pthread representation with

a queue/pool of work units that are scheduled and executed.

This structure is called Execution Stream in Argobots, Shep-

herd in Qthreads, Worker in MassiveThreads, Processor

in Converse Threads, and Thread in Go. The number of

these elements that are spawned in this level can be defined

by the user at run time (Group Control row) via environment

variables; but for Argobots the programmer can also create

them at run time. In contrast, Pthreads only allows to create

the OS thread itself, while schedulers and queues need to be

created entirely by the user. The second level corresponds to

work units, such as ULTs or Tasklets, that can be executed

by these OS threads. Qthreads adds one more level, called

Worker, that is positioned between the previous two, managed

by a Shepherd, and responsible for executing the work units.

Different types of work units can be used in LWTs (Number

of Work Unit Types row). All of them support ULTs that

are independent, yieldable, migratable codes with their own

private stack. Argobots and Converse Threads support an

extra work unit called Tasklet (atomic work unit without a

private stack). These work units are lighter than ULTs and can

be used in codes that do not require blocking calls or context

switches, or as a communication mechanism as Converse

Threads does.

The manner in which work units are stored and sched-

uled is also important to understand the PM. On the one

hand, Argobots and Pthreads can create several pool/queue

configurations thanks to their flexibility. On the other hand,

Qthreads, MassiveThreads, Converse Threads, and Go

do not offer that feature to programmers. While the latter only

uses a global shared queue, the former three assign one work

unit storage structure per thread.

Another key element of the LWT PMs is the scheduler. Go

is the weaker option because it is not oriented to resource

utilization but to concurrent tasks. This implementation is

less flexible (not even offering the common yield function)

and only has a shared work unit queue that the internal

scheduler manages. At the other extreme, Argobots is the

most flexible solution because it offers the function yield_to,

which avoids a call to the scheduler, giving directly the control

to another ULT. Moreover, it allows the user to create its own

ad-hoc, stackable schedulers that may be used by different

Execution Streams. In the middle between these two sides of

the spectrum, the other libraries use a predetermined scheduler

for the threads. In order to balance the workload, Qthreads

allows users to create work units from one Shepherd to another

473

TABLE I: Summary of the execution and scheduling functionality offered by the LWT libraries.

Concept Pthreads Argobots Qthreads MassiveThreads Converse Threads Go

Levels of Hierarchy 1 2 3 2 2 2
of Work Unit Types 1 2 1 1 2 1

Thread Support � � � � � �
Tasklet Support � �
Group Control � � � � �

Yield To �
Global Work Unit Queue � � �
Private Work Unit Queue � � � � �

Plug-in Scheduler � � �(configure) � �
Stackable Scheduler �

Group Scheduler �

one’s queue; MassiveThreads implements a random Work-

Stealing mechanism; and, Converse Threads leverages the

Messages.

V. HARDWARE AND SOFTWARE RESOURCES

All tests have been executed in an Intel 36-core (72 hard-

ware threads) machine consisting of two Intel Xeon E5-2699

v3 (2.30 GHz) CPUs and 128 GB of memory.

GNU’s gcc 5.2 compiler was used to compile all the

LWT libraries and OpenMP examples. Intel icc compiler

15.0.1 was used to evaluate the performance of the OpenMP

implementations and linked with the OpenMP Intel Runtime

20151009 version. For LWT libraries, Argobots, Converse

Threads, and Go libraries updated to 04-2016; Qthreads 1.10

and MassiveThreads 0.95 were evaluated.

All results presented next were calculated as the average

of 500 executions. The maximum relative standard deviation

(RSD) observed in the experiments was around 2%.

VI. BASIC FUNCTIONALITY

In this section, we review the basic functionality offered

by the different LWT solutions focusing on the OpenMP PM.

From a parallel PM point of view, all the features discussed

in Section IV have a crucial impact on performance. All

these LWT solutions as well as those based on OpenMP

follow the same programming approach. On the one hand,

programmers are responsible for controlling the main thread

that executes the sequential code. This thread is in charge

of creating secondary/worker threads, assigning work units,

executing their own work and, finally, joining them. This

completion may be done using different mechanisms, such as

barriers, messages, or thread joins. On the other hand, worker

threads wait for work to be done, acting over parallel codes.

The parallel code may vary depending on different aspects,

such as granularity, the type of code, or the data locality, but

the work unit creation and join phases are clearly critical steps.

Therefore, they need to be measured when LWTs are used.

Figure 2 reports the time spent by the main thread in

order to create one work unit for each thread used. Except

MassiveThreads (H), which maintains the performance be-

cause it creates all the work units into its own queue and

waits for the work-stealing, the other libraries (including

Intel and GNU OpenMP implementations labeled as icc and

gcc, respectively) show a linear increase of time because the

creation of the work units is done sequentially by the main

thread. Go’s performance is affected by using just one shared

queue. In that scenario the main thread is busy creating work

units while the other threads are accessing the queue to obtain

one work unit. This situation adds contention (mutexes) in

the queue access. The MassiveThreads (W) result is caused

by its underlying creation policy. The main thread creates the

first work unit, pushes the main execution flow to its own

queue, and executes the new created work unit. Another thread

steals the main task and creates the second work unit, and

so on. These steps add a non-negligible overhead when the

number of created work units is small. Converse Threads

and Argobots Tasklet use the lightest work unit available

for those libraries. This type of work unit yields the best

performance, thanks to its stackless structure, being up to twice

faster than the Argobots ULT approach and three times faster

than the Qthreads implementation. In this scenario, when

OpenMP is employed all threads are created in a previous

parallel section so that the overhead of the Pthreads creation

step is not added for a fair comparison.

 0.001

 0.01

 0.1

 1

1 2 4 8 16 24 32 36 40 48 56 64 72

C
re

at
e

T
im

e
(m

s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT
Qthreads

MassiveThreads (H)
MassiveThreads (W)
Converse Threads
Go

Fig. 2: Time of creating one work unit for each thread.

Figure 3 displays the time spent while the master thread is

waiting for the parallel code completion. In this analysis we

can distinguish different behaviors in the approaches of these

libraries. Since gcc OpenMP and Converse Threads use a

barrier mechanism, the join time increases linearly with the

addition of more threads. In this situation Converse Threads

does not benefit from the Tasklet utilization. The fast time

474

 0.001

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

Jo
in

 T
im

e
(m

s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT
Qthreads

MassiveThreads (H)
MassiveThreads (W)
Converse Threads
Go

Fig. 3: Time of joining one work unit for each thread.

increment in icc OpenMP is caused by using more than one

thread per CPU. The behavior changes when more than 8

threads are used (9 cores per socket) and when more than 36

threads are spawned (36 core machine). This runtime performs

several checks that require the master thread to access to other

threads’ allocated memory. The other libraries use a join mech-

anism but, while Go implements the most efficient of them

based on out-of-order channel communication, Qthreads and

Argobots use a sequential approach that checks either a

memory word value or the work unit status respectively. The

unique difference between the last two implementations is

that Argobots not only checks the status but also frees the

work unit structure. Nevertheless, this additional action does

not cause a performance drop and Argobots still obtains

the best result. Conversely, scenarios using MassiveThreads

deliver the worst performance because, since the main task

can be executed by any of Workers, each time a thread is

joined, a query of the current work unit queue size and several

scheduling procedures occur.

VII. PARALLEL CODE PATTERNS

Many scientific applications can be easily accelerated using

OpenMP. The basic mechanism is to use pragmas in order to

indicate the compiler which portion of code can be executed

in parallel. A few code patterns are common in many scientific

applications. In this section, we present and discuss some

of the common parallel code patterns and then analyze how

current OpenMP runtimes deal with them.

A. For Loop

The most frequently used OpenMP pragma and probably

also the easiest way to express parallelism is: #pragma omp

parallel for (see Listing 1). It can be placed right before

a parallel loop that does not have any iteration dependence,

and produces a code where all available threads execute

their own iteration range. All the process is transparent to

the programmer who is only responsible for selecting the

parallelizable code portion and adding the pragma. From the

point of view of current OpenMP runtimes, gcc and icc

manage this scenario similarly. The master thread sets the

pointer function call of the parallel code in each thread’s data

Listing 1: OpenMP for loop parallelism.

1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 code(i);
4 }

structure and then the master thread also calls the function.

All threads wait in a barrier (unless a nowait clause is used)

at the end of this code.

B. Task Parallelism

Task parallelism appeared in the OpenMP 3.0 specification

as an alternative to parallelize unbounded loops, recursive

codes, adding more flexibility to parallel codes. It follows

the LWT approach in the sense that tasks are pieces of

queued code waiting to be executed by an existing idle thread.

This is expressed with the pragma #pragma omp task, but

each OpenMP runtime leverages its own approach for task

management. For example, the gcc implementation creates

a shared task queue that can be accessed by all the team’s

threads. On the other hand, the icc allows each thread to

allocate a private task queue where tasks are stored. Moreover,

it implements a work-stealing mechanism that is triggered

once a thread’s task queue is empty and the thread is idle. Both

implementations add a non-configurable cutoff mechanism that

avoids performance loss when a large number of tasks are cre-

ated. Once a certain number of tasks is reached (64×number

of threads for gcc and 256 in each thread’s queue in the icc),

new tasks are executed sequentially instead of being pushed

into the queues. The following two situations can be found

depending on the structure where tasks are created:

1) Single Region: In this scenario, a single thread inside a

single or master OpenMP (#pragma omp single or #pragma

omp master) region is responsible for creating all the tasks,

as shown in Listing 2. While this thread is creating tasks, the

other threads execute them. Once the task creation code is

finished, the task creator thread also participates in the task

execution process. Each OpenMP runtime has its own task

mechanism implementation. As the gcc OpenMP has only one

shared queue, all the tasks are pushed into it and all the threads

compete to gain access there to obtain a task. This shared

queue is protected by a mutex and thus contention increases

with the number of threads. In the icc implementation, the

task creator thread pushes the new tasks into its own task

queue while the other threads try to steal them. Here the

performance is affected by the effectiveness of the work-

stealing mechanism.

2) Parallel Region: This pattern is employed when all the

threads in the team create a certain number of tasks. First, the

threads create all the tasks pushing them into the task queue

(if the cutoff value is not reached), and then they execute the

queued tasks. In the gcc implementation, again, all threads

compete to gain access to the shared queue, while in the

icc approach, each thread will push the tasks into its own

475

Listing 2: OpenMP task parallelism inside a single region.

1 #pragma omp parallel{
2 #pragma omp single{
3 for (int i = 0; i < N; i++) {
4 #pragma omp task{
5 code(i);
6 }
7 }
8 }
9 }

Listing 3: OpenMP nested parallelism.

1 #pragma omp parallel for
2 for (int i = 0; i < N; i++) {
3 #pragma omp parallel for firstprivate(i)
4 for (int j = 0; j < N; j++){
5 code(i,j);
6 }
7 }

queue and work-stealing will be reduced thanks to a better

load balance.

C. Nested Parallel Constructs

When the runtime implementations find a parallel pragma

in the user’s code, they create a team of the specified number

of threads. Hence, if the current parallel code is not nested,

the main thread becomes the master thread of a thread team.

If it is a nested parallel structure, however, a new team of

threads is created for each thread in the main team. Therefore,

the total number of created threads grows quadratically. The

nested parallelism is not common in applications because the

performance drops when the number of threads exceeds that of

CPUs and because the code behavior is difficult to understand.

There are some types of situations that the user may not be

aware of. For example, a programmer may accelerate code

with OpenMP pragmas, and inside this parallel code, threads

may call an external library function that is parallelized using

also OpenMP pragmas. Both OpenMP implementations ac-

commodate nested parallelism. However, the way they manage

the new thread teams is different. The icc OpenMP runtime

creates a new thread team for each thread in the main team

reusing idle threads or creating them. The gcc implementation

does not reuse the idle threads. Each time an OpenMP pragma

is found, a new team is created for each thread in the main

team. Since the idle threads are not deleted, the total number

of threads may increase exponentially. In order to simplify this

situation, we have reduced this pattern to two nested for loops,

each with its own #pragma omp parallel for directive as

shown in Listing 3.

D. Nested Task Parallelism

Sometimes, a parallel code may be separated into several in-

dependent tasks, such as in divide-and-conquer algorithms. In

these cases, task parallelism is commonly exploited. Therefore,

this situation combines the previous two task scenarios. In the

first step, a single thread creates parent tasks; then each parent

task spawns children tasks. As discussed in Section VII-B,

gcc creates all tasks into the shared queue while icc inserts

all the parent tasks into the single thread queue. Once this is

performed, the children tasks are executed.

VIII. MICROBENCHMARK DESIGN

In this section, we detail the microbenchmark implemen-

tations that will run on top of the LWT libraries. These

microbenchmarks mimic the behavior of the parallel patterns

discussed in the previous section. First, we introduce a general

approach for each test. Then, we describe some specific

implementations that depend on the LWT library. Lastly, we

present a summary of the most frequently used functions.

A. General Development

Although each LWT library internally handles the work

unit storage and execution scheduling, all of them allow the

programmer to control the main thread. This thread works

as a master thread, while the other threads, defined by the

user at run time, wait until they obtain work. Therefore, the

work division and work unit creation is similar for all of them.

Moreover, all the libraries implement a joining mechanism to

wait for work units to complete their execution.

1) For Loop: The main thread divides the iteration space

among a number of threads and creates a work unit for each

thread that contains a function pointer to be executed. An

argument structure is initialized in order to store the data (the

number of iterations, variables, and so on) that is necessary to

execute the function.

2) Task Parallelism: When a single region is used, the main

thread creates one work unit for each OpenMP task and, as in

the previous case, the work unit is initialized with the function

pointer and the needed data. Conversely, if it is placed inside

a parallel region, the main thread first divides the work among

the other threads, as in the for loop case, and then each thread

creates its own work units that represent the OpenMP tasks.

3) Nested Parallel Constructs: For the outer for loop, the

behavior of our implementation is the same as in the for loop

microbenchmark, but each work unit that executes a range of

iterations of the outer loop creates as many work units as there

are threads being used to divide the inner loop iterations.

4) Nested Task Parallelism: This case is implemented

analogously to the single region of the task parallelism mi-

crobenchmark. When a task is executed, it creates a certain

number of child tasks.

B. Specific Implementations

Although all the approaches are similar, each LWT library

adds its own characteristics to the microbenchmark implemen-

tations.

1) Converse Threads: As discussed in Section III, this li-

brary was conceived to be controlled by a higher layer. Despite

it supports two types of work units (ULTs and Messages), only

the latter can be pushed from the main thread execution to

the other thread’s queues. Therefore, all the results in next

section have been obtained using Messages. For this type

476

TABLE II: Summary of the most used functions in microbenchmark implementations using LWT.

Function Argobots Qthreads MassiveThreads Converse Threads Go

Initialization ABT init qthread initialize myth init ConverseInit
ULT creation ABT thread create qthread fork myth create CthCreate go function

Tasklet creation ABT task create CmiSyncSend
Yield ABT thread yield qthread yield myth yield CthYield
Join ABT thread free qthread readFF myth join channel

Finalization ABT finalize qthread finalize myth fini ConverseExit

of implementations, the main thread employs a round-robin

dispatch in order to push the work units directly into other

thread’s ready queue. Moreover, the return mode is used as it

is the only mode that matches the OpenMP PM from the point

of view of the master thread’s behavior. Both features, the use

of Messages and the Converse return mode, restrict the use of

Converse Threads in nested parallel scenarios.

2) MassiveThreads: For this library, both available policies

(i.e., Work-first and Help-first) are analyzed, though just the

best for each scenario is presented in the results. The real

difference between both implementations resides in the way

that the new work unit is treated. In the former, the current

work unit is pushed into the ready queue and the thread

executes the new work unit. In the latter the new work unit

is pushed into the ready queue and the thread continues with

the execution of the current work unit.

3) Qthreads: With its three levels of hierarchy, Qthreads

accommodates multiple combinations in order to achieve high

performance in each of the previous described situations. We

have tested a set of combinations, including one Shepherd

managing all the node (it manages up to 72 Workers), one

Shepherd for each socket (each one manages up to 36 Work-

ers), and one Shepherd for each CPU (each one manages

just one Worker). After a preliminary analysis, we chose two

combinations: one Shepherd bound to a node or one Shepherds

per CPU. The first choice is better with a reduced number of

work units but increases the load imbalance. The second option

is more appropriate for scenarios with a moderately high

number of work units. We discarded the option with a single

Shepherd for each socket because it performed much worse

than the other choices for all scenarios. Moreover, we decided

to test the functions qthread_fork and qthread_fork_to,

which differ in the work queue where the new work unit is

stored. The former puts the work unit into the current Shepherd

queue and the later allows the user to put the work unit

into other Shepherd’s queue. If the last option is chosen, the

main thread distributes the work using a round-robin dispatch.

Hence, four implementations have been evaluated for each test.

4) Argobots: The flexibility offered by Argobots is two-

fold. On the one hand, two different types of work units can

be used: ULTs and Tasklets. On the other hand, the work

unit pools can be private for each thread or shared among

all of them. If the private pool option is selected, the main

thread needs to dispatch the created work units directly to

each thread’s pool in a round-robin fashion. Therefore, four

possible implementations have been tested. Since Tasklet does

not have its own stack and is not yieldable, in those scenarios

Listing 4: Pseudo-code using abstracted LWT functions.

1 #define N 100
2
3 void example () {
4 printf ("Hello world\n");
5 }
6
7 int main(int argc , char * argv []) {
8 initialization_function ();
9

10 for (int i=0; i<N; i++)
11 ULT_creation_function(example);
12
13 yield_function ();
14
15 for (int i=0; i<N; i++)
16 join_function ();
17
18 finalize_function ();
19 }

that require two steps, the first of them is performed using

ULTs.

5) Go: This library only allows one implementation due to

its unique shared work unit queue. All work units need to be

pushed into this queue as the gcc OpenMP task implementa-

tion does. Therefore, only one possibility is analyzed.

C. Function Summary

Table II summarizes the most commonly used functions

in the microbenchmarks that we have developed. We pos-

tulate that the majority of codes can be implemented using

this reduced set of functions. A pseudo-code illustrating this

summary is shown in Listing 4.

IX. EVALUATION

In this section, we analyze the performance of the parallel

code patterns.

In order to avoid modifying the code for each parallel

pattern, we have carefully chosen to implement a BLAS-1

function that matches perfectly the fine-grained approach of

LWT and is highly parallelizable. We use the well-known Sscal

function, which multiplies (and overwrites) the components of

a vector by a scalar. The kernel code is shown in Listing 5.

In the for loop and the nested for loop cases, the elements in

the vector are divided between the current threads. In the cases

where task parallelism is exploited, one task is created for each

vector element. This granularity is useful to understand each

LWT behavior because this kind of parallelism does not hide

the thread management overhead. Concretely, if the execution

477

Listing 5: Sscal BLAS-1 function kernel code.

1 for (int i = 0; i < N; i++) {
2 v[i] = v[i] * a;
3 }

 0.001

 0.01

 0.1

 1

1 2 4 8 16 24 32 36 40 48 56 64 72

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

s)

Number of Threads

OMP (GCC)
OMP (ICC)
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 4: Execution time of 1,000 iteration for loop.

time of a piece of code is long, this overhead is hidden and

there is not any difference between using LWT or OS threads.

A. For Loop

In this scenario, a 1,000 iteration for loop is executed with

each iteration calculating one vector position.

Figure 4 illustrates the results. The implementations selected

for this scenario are Argobots with private pools, Qthreads

with one Shepherd per CPU, and MassiveThreads with the

Help-first policy. While Argobots results present the best

performance thanks to their minimum creation and join times

(see Figures 2 and 3), the other implementations suffer from an

appreciable overhead when more threads are added to the test.

Qthreads maintains its performance because of its constant

joining time, but this behavior changes when more Shep-

herds than the number of cores are used. Once this number

is reached, the total time is increased. gcc and Converse

Threads pay the contention added by the barrier, while Go

suffers from the shared queue. The icc implementation also

experiences a noticeable overhead when more threads than

the number of physical cores are used (as in Figure 3).

MassiveThreads, due to its work-stealing mechanism, shows

the worst performance. As the number of created work units

is the same as that in the Figures 2 and 3, the behavior of this

test is similar to adding those results.

B. Task Parallelism

This test creates a set of tasks. Each task is in charge

of one vector element. Two sizes have been evaluated when

a single thread creates all the work units: 100 tasks and

1,000 tasks. The results for the former test are similar to

those in Figure 4, because the LWT libraries use the same

approach and the number of tasks is small. Figure 5 exposes

the results for 1,000 tasks. In this case, the implementation

choices are Argobots using private pools, Qthreads with

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 5: Execution time of 1,000 tasks created into a single

region.

one Shepherd for each Worker, and MassiveThreads with

the Work-first policy. The default behavior in the gcc OpenMP

Runtime has been modified by setting the OMP WAIT POL-

ICY environment variable to passive, in order to decrease

the overhead caused by the task queue contention when the

number of threads is increased. Otherwise, the threads try to

gain the queue access more frequently adding more contention.

The icc implementation suffers because of the work-stealing

mechanism as MassiveThreads does. Worker threads try to

gain access to the master thread queue and steal work units,

adding contention. Moreover, Go follows the trend of gcc

because both of them rely on a single shared queue. Due to the

high number of work units, the difference between Argobots

ULTs and Tasklets is observable. This situation reveals that

if the executed code does not need any context switch, it

is beneficial to use Tasklets instead of ULTs. Furthermore,

as Argobots Tasklets are inspired in Converse Threads

Messages, their performance is similar, and their utilization

reduces the execetion time by a factor of two compared with

ULT implementations. On the other hand, Qthreads follows

a linear trend caused by the task dispatch. In addition, the per-

formance change in the OpenMP implementations when more

than eight threads are used is due to the cut-off mechanism

discussed in Section VII-B. Once this number of threads is

reached, the mechanism is not triggered, and the performance

comes from a real task parallel execution. In contrast with the

for loop case, Qthreads outperforms Argobots becoming the

best ULT choice in this scenario because the time spent in

the join-and-free task mechanism implemented by the latter

is longer than that in the Qthreads join implementation.

However, Argobots presents a more regular behavior when

increasing the number of threads because of the reduced

number of interferences in the resource utilization.

The case where tasks are created inside a parallel region

and each thread has to create its work units into its own queue

represents the first of a two-step algorithm. In the first step,

the pointer to the parallel code is assigned (like in the for loop

scenario); and in the second, the tasks are created. Here, two

different approaches have been evaluated with 100 and 1,000

478

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 6: Execution time of 1,000 tasks created into a parallel

region.

tasks but only the latter is shown because the conclusions

are similar. In this case, the implementation choices are the

same as those in the previous test. Figure 6 displays that Go

and Converse Threads are negatively affected by the two-

step implementation due to the shared queue contention in

the former and the synchronization (more than 70% of the

total time) in the latter. Converse Threads needs extra yield

calls due to the use of Messages in the first step. This im-

plementation is possible because we know how many parallel

code levels exist. This approach would not be possible with

an automatic code generator. MassiveThreads is now more

efficient because its implementation is designed to deal with

recursive paradigms. icc offers better performance because

now, with practically a perfect load balance, the work-stealing

has disappeared. gcc outperforms other solutions thanks to its

cut-off mechanism (up to eight threads) and to the wait policy

value set as in the previous test. Again, Qthreads experiences

a significant increment because of the time with the number

of threads and performs much worse than other libraries. Most

of this performance drop is because of the time spent in the

join mechanism, which doubles the Argobots time. Although

both Argobots implementations use ULTs (that can yield)

in the first step, the difference between ULTs and Tasklets is

noticeable. Again, when just computation code is executed the

use of Tasklets is highly recommended.

C. Nested Parallel Structures

Two approaches have been executed and analyzed for this

case. A scenario where the outer and the inner loops have

100 iterations and an alternative with 1,000 iterations each.

The same conclusions can be extracted from them. Argobots

with private pools, Qthreads with one Shepherd for each

Worker, and MassiveThreads with Work-first policy are

used. Figure 7 shows the results for this test (notice that the

y-axis is in seconds). The OpenMP implementations show a

change if we compare the performance difference with LWT

libraries in this figure with that shown in the previous. This

is due to the suboptimal implementation of the nested parallel

structures. On the one hand, gcc does not reuse the idle threads

in nested parallel codes, so each time an OpenMP pragma is

 0.0001

 0.001

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 7: Execution time of a nested parallel for structure with

1,000 iterations per loop.

found, a set of new threads is created. This situation causes

that, with 36 threads, this implementation spawns 35,036

threads (36 for the main team, and 35 for each outer loop

iteration). On the other hand, icc reuses the idle threads but

it still creates a large number of threads (1,296: 36 for the

main team and 35 for each secondary team) much more than

the total number of cores (72), causing oversubscription. As in

previous tests, Go and Converse Threads suffer from the two

step algorithm. The former is because all the ULTs are pushed

in the same shared queue, and the latter is because of the

extra yield and barrier functions. However, these implemen-

tations perform close to the OpenMP solutions. Conversely,

Argobots Tasklets, Qthreads, and MassiveThreads show

the best performance because they do not create more threads,

just work units. This approach avoids the oversubscription

problem reducing the OS thread management and increasing

the performance with respect to the Intel OpenMP approach by

factors of 130, 48 and 60 for Argobots Tasklets, Qthreads,

and MassiveThreads respectively when 36 threads are used.

Again, the difference between Qthreads and Argobots ULT

performance is due to the join-and-free mechanism.

D. Nested Task Parallelism

Both task parallelism tests introduced earlier are joined in

the last test. First, a single thread creates the parent tasks,

and then each thread that executes them creates a set of

child tasks. We have tested two approaches, both of them

creating 100 parent tasks, but each creating 4 or 10 child

tasks. The implementations used in this scenario are Argobots

with private pools, Qthreads with one Shepherd for each

Worker, and MassiveThreads with Work-first policy. The

results in Figure 8 correspond to the former, with 100 parent

tasks and 400 child tasks. The two-step algorithm does not

help Converse Threads and Go implementations because

of the same reasons discussed in the Task Parallelism case.

Converse Threads expends up to 75% of its execution

time in performing barrier and yield operations. At the other

extreme, Argobots achieves the best performance with its

two implementations outperforming Qthreads by a factor of

2.8. gcc and icc performances are affected by the single

479

 0.01

 0.1

 1

 10

1 2 4 8 16 24 32 36 40 48 56 64 72

T
ot

al
 E

xe
cu

tio
n

T
im

e
(m

s)

Number of Threads

gcc
icc
Argobots Tasklet
Argobots ULT

Qthreads
MassiveThreads
Converse Threads
Go

Fig. 8: Execution time of 400 nested tasks.

region step but helped by the cut-off mechanism up to eight

threads (as in Figure 5). MassiveThreads shows a small

overhead due to the combination of work-stealing and the

increasing number of threads, but it performs close to gcc

implementation.

E. Discussion

Although some libraries offer several configuration options,

those we selected show a good match for almost all the

evaluated tests. Argobots with one private queue for each

Execution Stream, and Qthreads with one Shepherd per core

and qthread_fork_to function were always chosen. The

preferred option for MassiveThreads varies depending on the

number of created ULTs but, for most of the tests, the Work-

first policy was the selected option. These three solutions

outperform the other evaluated approaches (including OpenMP

runtimes) in our benchmarks. Concretely, they are clearly

better than the POSIX thread-based solutions in nested and

task parallelism and fine-grained codes.

X. CONCLUSION

We have proved that the use of LWT approaches for fine-

grained parallel codes is feasible, because these libraries can

deal with common parallel code patterns that are accelerated

with OpenMP pragmas, offering a performance level that is,

at least, as good as that reached with the OpenMP runtimes

implemented by GNU and Intel. LWTs improve performance

in scenarios that are becoming more popular such as task

parallelism or nested parallel structures. Moreover, we have

detected some implementation choices with strong impact on

performance in OpenMP runtimes such as the nested paral-

lelism treatment and the effect of the work-stealing mechanism

in the Intel case.

This work has also identified a reduced set of functions

that suffice to implement each parallel code pattern. In the

future, we plan to design and implement a common API for

the LWT libraries. This API could be placed under several

high-level PMs, such as OpenMP or OmpSs, that are currently

implemented on top of Pthreads or custom ULT solutions.

XI. ACKNOWLEDGMENTS

The researchers from the Universitat Jaume I de Castelló

were supported by project TIN2014-53495-R of the MIMECO,

the Generalitat Valenciana fellowship programme Vali+d 2015,

and FEDER. This work was partially supported by the U.S.

Dept. of Energy, Office of Science, Office of Advanced

Scientific Computing Research (SC-21), under contract DE-

AC02-06CH11357. We gratefully acknowledge the computing

resources provided and operated by the Joint Laboratory for

System Evaluation (JLSE) at Argonne National Laboratory.

REFERENCES

[1] “TOP500 Supercomputer Sites,” http://www.top500.org/.
[2] B. Nichols, D. Buttlar, and J. Farrell, Pthreads programming: A POSIX

standard for better multiprocessing. ” O’Reilly Media, Inc.”, 1996.
[3] “OpenMP 4.5 specification,” www.openmp.org/.
[4] D. Stein and D. Shah, “Implementing lightweight threads.” in USENIX

Summer, 1992.
[5] Microsoft MSDN Library, “Fibers,” https://msdn.microsoft.com/en-us/

library/ms682661.aspx.
[6] “Programming with Solaris Threads,” https://docs.oracle.com/cd/

E19455-01/806-5257/6je9h033n/index.html.
[7] J. d. Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “TiNy threads: A thread

virtual machine for the Cyclops64 cellular architecture,” in Proceedings
of the Fifth Workshop on Massively Parallel Processing, April 2005.

[8] L. V. Kalé, M. A. Bhandarkar, N. Jagathesan, S. Krishnan, and J. Yelon,
“Converse: An interoperable framework for parallel programming,” in
Proceedings of the 10th International Parallel Processing Symposium
(IPPS), April 1996, pp. 212–217.

[9] L. V. Kale and S. Krishnan, CHARM++: A portable concurrent object
oriented system based on C++. ACM, 1993, vol. 28, no. 10.

[10] BSC, “Nanos++,” https://pm.bsc.es/projects/nanox/.
[11] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-

torell, and J. Planas, “OmpSs: A proposal for programming hetero-
geneous multi-core architectures,” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[12] J. Nakashima and K. Taura, “MassiveThreads: A thread library for high
productivity languages,” in Concurrent Objects and Beyond. Springer
Berlin Heidelberg, 2014, vol. 8665, pp. 222–238.

[13] K. B. Wheeler, R. C. Murphy, and D. Thain, “Qthreads: An API for
programming with millions of lightweight threads,” in Proceedings of
the 2008 Workshop on Multithreaded Architectures and Applications
(MTAAP), April 2008.

[14] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,
A. Castelló, D. Genet, T. Herault, P. Jindal, L. V. Kalé, S. Krish-
namoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun, and
P. Beckman, “Argobots: A lightweight threading/tasking framework,”
2016, https://collab.cels.anl.gov/display/ARGOBOTS/.

[15] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime system,”
Journal of Parallel and Distributed Computing, vol. 37, no. 1, pp. 55–69,
1996.

[16] C. Pheatt, “Intel R© threading building blocks,” Journal of Computing
Sciences in Colleges, vol. 23, no. 4, pp. 298–298, 2008.

[17] F. Schmager, N. Cameron, and J. Noble, “Gohotdraw: Evaluating the
go programming language with design patterns,” in Evaluation and
Usability of Programming Languages and Tools. ACM, 2010, p. 10.

[18] “Stackless Python,” http://www.stackless.com.
[19] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali, “Protothreads: Simpli-

fying event-driven programming of memory-constrained embedded sys-
tems,” in Proceedings of the 4th International Conference on Embedded
Networked Sensor Systems, ser. SenSys ’06, October 2006, pp. 29–42.

[20] L. V. Kalé, J. Yelon, and T. Knuff, “Threads for interoperable parallel
programming,” in Proceedings of the 9th International Workshop on
Languages and Compilers for Parallel Computing, ser. LCPC ’96,
August 1996, pp. 534–552.

480

